Tilt experiments with Kipon Tilt adapter for Nikon lenses on Sony NEX cameras

Kipon manufactures an adapter which enables you to mount any lens with a Nikon F-mount to your Sony NEX camera. Additionally the adapter can be tilted in any direction. Tilting in this context means, that the lens is pivoted out of the optical axis of the lens.

The two following images illustrate this concept. In the first image the lens was tilted to the right (from the photographers point of view). In the second image the lens was tilted to the left (from the photographers point of view).

Nikon Nikkor 20mm/2.8 AI-s on Sony NEX-7 (tilted right)
Nikon Nikkor 20mm/2.8 AI-s on Sony NEX-7 (tilted right)
Nikon Nikkor 20mm/2.8 AI-s on Sony NEX-7 (tilted left)
Nikon Nikkor 20mm/2.8 AI-s on Sony NEX-7 (tilted left)

You can use a tilted lens to orient the plane of focus of your optical system in special ways. Normally you use a tilting lens so that the plane of focus is oriented in a way which maximizes the visually sharp areas of your image. Theodor Scheimpflug was the first person who described these facts and therefore the priciple is called the Scheimpflug principle.

But in the following example I tilted the lens in order to orient the plane of focus in a way which minimized the sharp areas of the image. As this looks nearly identical to a very shallow depth of field, the observer mostly gets the impression, that he is only looking on a photographed mock-up of a landscape rather than a real landscape.

Tilt experiment with Kipon NIK-NEX adapter and Nikon Nikkor 20mm/2.8 AI-s on Sony NEX-5
Tilt experiment with Kipon NIK-NEX adapter and Nikon Nikkor 20mm/2.8 AI-s on Sony NEX-5

In order to get this image, the lens was tilted and the camera was pointed down. Back at home, the vertical lines of the buildings were brought back to vertical alignment. In other words I tilted in the real world and shifted in the digital world…

Cross on Summit of Mount Hirschberg

North of Bad Hindelang arises the Hirschberg. It is a mountain, that is 1500m high. Near the cross is a beautiful viewpoint to the valley of Bad Hindelang, Bad Oberforf and also towards Oberjoch.
[pano file=”https://www.panotwins.de/wp-content/panos/MMatern_20120731_0034_GipfelkreuzHirschberg.xml” preview=”https://www.panotwins.de/wp-content/panos/MMatern_20120731_0034_GipfelkreuzHirschberg.jpg”]
Geotag Icon Show on map

White Easter in Bad Hindelang

Some impressions of Bad Hindelang on Easter Sunday. Over night fell about 10cm new snow. Between the clouds started to show some blue inbetween. This was just a quick handheld cylindrical I shot to capture the scenery. I took 6 portrait oriented images and stiched them.

White Easter in Bad Hindelang 2012
White Easter in Bad Hindelang 2012

Geotag Icon Show on map


SLR Magic 35/f1.7 on Sony NEX 5

The SLR Magic 35mm/F1.7 is a manual lens and is available with an E-Mount, that fits on the Sony NEX camera series.
To be able to use it, you have to make sure you tweak some settings in your camera:

  1. Make sure you enable the shooting without a lens: Menu → Setup → Release w/o lens → Enable
  2. Before you continue make sure you have Firmware ≥ Ver. 04 installed! Check this using Menu → Setup → Version. When you have an older version installed download the latest version from the Sony support site here.
  3. Enable the MF Assist function using Menu → Setup → MF Assist → 2 Sec
    You can choose between No Limit — 2 Sec — 5 Sec.
  4. Enable the Peaking Level using Menu → Setup → Peaking Level → Mid
    You can choose between Low — Mid — High.
  5. Choose your Peaking Color using Menu → Setup → Peaking Color → Red
    You can choose between YellowRed — White.

Switch your camera to A- Mode (aperture priority) and use the MF Assist button to get a perfectly sharp picture even when shooting the lens wide open with f/1.7!

You find some example shots in this post.

See a very detailed review of the lens here.

SLR Magic 35/f1.7
SLR Magic 35/f1.7
SLR Magic 35/f1.7 on Sony NEX 5
SLR Magic 35/f1.7 on Sony NEX 5

24h Snowing and Raining (timelapse video)

I was searching for a first project I wanted to shoot with my new gadget. The remote trigger for the Sony NEX 5 I presented in the previous post. I decided to shoot a timelapse video. As I did not have my time lapse trigger with me but a laptop I applied some changes to the code and the time lapse function for the Ultimate Trigger was born.

I programmed a fixed interval of 10 minutes between each shot, set the camera to aperture priority mode, set the focus to manual and started shooting for 24 hours. Every now and then I checked the progress and had some minor problems:

  1. After the first two hours the servo had moved and did not trigger any more.
  2. After the first six hours the Ultimate Trigger battery has been drained, however I noticed this after about the time, when more than four hours of shots were missing.
  3. After half the shooting time the Sony NEX battery was about half empty. As I did not have a spare one with me I recharged it several times for 9 minute intervals between the 10 minute shooting intervals.

Apart from these minor flaws I am satisfied with the result you can see here:

24h Snowing and Raining

24 hours of snow and rain captured using a Sony NEX 5 and the Ultimate Trigger.

Remote Trigger with Arduino, a Shield in a Box

After the prototype remote trigger I presented in my previous post has been tested succesfully I decided to make my own shield for the arduino and put the whole system in a box, that I could take with me for shooting panoramas. What you see in the following pictures is my attempt to make a portable system for all types of remote triggering my NEX 5. I called this project The Ultimate Trigger V1.

Creative Commons License The Ultimate Trigger V1 is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

I tried to make the shield somehow modular in design. This means I can attach different types of servos, I can attach a different IR receiver and I can change the attached wireless RF receiver without using a soldering iron.

This image shows the guts of the whole system. On the left side from top to bottom:
The arduino board with the attached shield. Several items are connected via cables to the shield: The IR remote receiver with its red-black-blue cable going to the upper lid of the box on the right. The IR receiver itself is glued to the lid with instant adhesive. The servo can be connected via the red-black-green cable going towards the outside of the lid. The third party wireless RF remote receiver (dismantled compared to my last post) sits in the bottom right part of the left lid and is attached to the shild also via a cable. Last but not least you see the 9V battery powering the arduino and the shield. The wireless RF receiver has its own battery.

Ultimate Trigger V1 - Box Open
Ultimate Trigger V1 - Box Open

When the box is closed you see on the upper side (which is in my definition the side next to the camera and thus close to the servo) the three pins, where a servo can be attached. Furthermore you see on the side facing the operator the three LEDs showing the status of the device.

Ultimate Trigger V1 - Box Top
Ultimate Trigger V1 - Box Top

On the bottom side you see from left to right: The IR receiver, the arduino USB port and the arduino power port.

Ultimate Trigger V1 - Box Bottom
Ultimate Trigger V1 - Box Bottom

Like the image before this one shows the bottom part of the box (from left to right): The IR receiver, the arduino USB port and the arduino power port.

Ultimate Trigger V1 - Box Bottom Details
Ultimate Trigger V1 - Box Bottom Details

The following images show the system without the box. First the shield connected to the arduino. The battery, servo, RF receiver and IR receiver are all disconnected.

Ultimate Trigger V1 - Shield On Arduino
Ultimate Trigger V1 - Shield On Arduino

This image shows the top view of the plain shield.

Ultimate Trigger V1 - Shield Top
Ultimate Trigger V1 - Shield Top

This image shows the bottom view of the plain shield.

Ultimate Trigger V1 - Shield Bottom
Ultimate Trigger V1 - Shield Bottom
QR Code Business Card